Sign changes of error terms related to arithmetical functions
نویسندگان
چکیده
Let H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivated by a conjecture of Erdös, Lau developed a new method and proved that #{n ≤ T : H(n)H(n + 1) < 0} T. We consider arithmetical functions f(n) = ∑ d|n bd d whose summation can be expressed as ∑ n≤x f(n) = αx+P (log(x))+E(x), where P (x) is a polynomial, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) and ψ(x) = x− bxc − 1/2. We generalize Lau’s method and prove results about the number of sign changes for these error terms.
منابع مشابه
Sign changes of error terms related to arithmetical functions par Paulo
Résumé. Soit H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivé par une conjecture de Erdös, Lau a développé une nouvelle méthode et il a démontré que #{n ≤ T : H(n)H(n + 1) < 0} T. Nous considérons des fonctions arithmétiques f(n) = ∑ d|n bd d dont l’addition peut être exprimée comme ∑ n≤x f(n) = αx+ P (log(x)) + E(x). Ici P (x) est un polynôme, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) avec ψ(x) = x − bxc − 1...
متن کاملOn a Relation between Sums of Arithmetical Functions and Dirichlet Series
We introduce a concept called good oscillation. A function is called good oscillation, if its m-tuple integrals are bounded by functions having mild orders. We prove that if the error terms coming from summatory functions of arithmetical functions are good oscillation, then the Dirichlet series associated with those arithmetical functions can be continued analytically over the whole plane. We a...
متن کاملAsymptotic properties of functions defined on arithmetic semigroups
Asymptotic properties of certain special arithmetical functions, like the divisor function τ(n), the sum-of-divisors function σ(n) and the Euler function φ(n) can be investigated in the general setting of arithmetical semigroups. The book of J. Knopfmacher [8] contains a detailed study of such properties, including asymptotic formulae with error estimates and extremal orders of magnitude of fun...
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملDesign of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function
This article presents a fuzzy sliding-mode control scheme for a class of Takagi-Sugeno (T-S) fuzzy which are subject to norm-bounded uncertainties in each subsystem. The proposed stabilization method can be adopted to explore T-S uncertain fuzzy systems (TSUFS) with various local control inputs. Firstly, a new design is proposed to transform TSUFS into sliding-mode dynamic systems.In addi...
متن کامل