Sign changes of error terms related to arithmetical functions

نویسندگان

  • Paulo J. ALMEIDA
  • Paulo J. Almeida
چکیده

Let H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivated by a conjecture of Erdös, Lau developed a new method and proved that #{n ≤ T : H(n)H(n + 1) < 0} T. We consider arithmetical functions f(n) = ∑ d|n bd d whose summation can be expressed as ∑ n≤x f(n) = αx+P (log(x))+E(x), where P (x) is a polynomial, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) and ψ(x) = x− bxc − 1/2. We generalize Lau’s method and prove results about the number of sign changes for these error terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign changes of error terms related to arithmetical functions par Paulo

Résumé. Soit H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivé par une conjecture de Erdös, Lau a développé une nouvelle méthode et il a démontré que #{n ≤ T : H(n)H(n + 1) < 0} T. Nous considérons des fonctions arithmétiques f(n) = ∑ d|n bd d dont l’addition peut être exprimée comme ∑ n≤x f(n) = αx+ P (log(x)) + E(x). Ici P (x) est un polynôme, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) avec ψ(x) = x − bxc − 1...

متن کامل

On a Relation between Sums of Arithmetical Functions and Dirichlet Series

We introduce a concept called good oscillation. A function is called good oscillation, if its m-tuple integrals are bounded by functions having mild orders. We prove that if the error terms coming from summatory functions of arithmetical functions are good oscillation, then the Dirichlet series associated with those arithmetical functions can be continued analytically over the whole plane. We a...

متن کامل

Asymptotic properties of functions defined on arithmetic semigroups

Asymptotic properties of certain special arithmetical functions, like the divisor function τ(n), the sum-of-divisors function σ(n) and the Euler function φ(n) can be investigated in the general setting of arithmetical semigroups. The book of J. Knopfmacher [8] contains a detailed study of such properties, including asymptotic formulae with error estimates and extremal orders of magnitude of fun...

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

Design of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function

This article presents a fuzzy sliding-mode control scheme for a class of Takagi-Sugeno (T-S) fuzzy which are subject to norm-bounded uncertainties in each subsystem. The proposed stabilization method can be adopted to explore T-S uncertain fuzzy systems (TSUFS) with various local control inputs. Firstly, a new design is proposed to transform TSUFS into sliding-mode dynamic systems.In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007